Asymptotics of Daubechies Filters, Scaling Functions, and Wavelets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Daubechies Wavelets : Filters Design

The rst part of this work describes the full set of Daubechies Wavelets with a particular emphasis on symmetric (and complex) orthonormal bases. Some properties of the associated complex scaling functions are presented in a second part. The third and last part describes a multiscale image enhancement algorithm using the phase of the complex multiresolution representation of the 2 dimension sign...

متن کامل

Asymptotic Regularity of Daubechies’ Scaling Functions

Let φN , N ≥ 1, be Daubechies’ scaling function with symbol ( 1+e−iξ 2 )N QN (ξ), and let sp(φN ), 0 < p ≤ ∞, be the corresponding Lp Sobolev exponent. In this paper, we make a sharp estimation of sp(φN ), and we prove that there exists a constant C independent of N such that N − ln |QN (2π/3)| ln 2 − C N ≤ sp(φN ) ≤ N − ln |QN (2π/3)| ln 2 . This answers a question of Cohen and Daubeschies (Re...

متن کامل

Daubechies wavelets for linear scaling density functional theory.

We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daub...

متن کامل

Generalized biorthogonal Daubechies wavelets

We propose a generalization of the Cohen-Daubechies-Feauveau (CDF) and 9/7 biorthogonal wavelet families. This is done within the framework of non-stationary multiresolution analysis, which involves a sequence of embedded approximation spaces generated by scaling functions that are not necessarily dilates of one another. We consider a dual pair of such multiresolutions, where the scaling functi...

متن کامل

Computing Derivatives of Scaling Functions and Wavelets

This paper provides a general approach to the computation, for sufficiently regular multiresolution analyses, of scaling functions and wavelets and their derivatives. Two distinct iterative schemes are used to determine the multiresolution functions, the so-called ‘cascade’ algorithm and an eigenvector-based method. We present a novel development of these procedures which not only encompasses b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 1998

ISSN: 1063-5203

DOI: 10.1006/acha.1997.0234